\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE - APRIL, 2019
 DIGITAL COMPUTER PRINCIPLES

[Time : 3 hours
(Maximum marks : 100)

PART - A
(Maximum marks : 10)

I Answer all questions in one or two sentences. Each question carries 2 marks.

1. Convert (41.6875) ${ }_{10}$ to binary.
2. Which gates are called universal gates and why ?
3. What is don't care condition? Mention its use.
4. What are flip-flops? Give examples.
5. What is hamming code, also specify its applications ?

PART - B

(Maximum marks : 30)
II Answer any five of the following questions. Each question carries 6 marks.

1. Simplify the following Boolean functions to a minimum number of literals. Also implement the Boolean functions with gates.
(a) $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=(\mathrm{X}+\mathrm{Y})(\mathrm{Y}+\mathrm{Z})$
(b) $\mathrm{F}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})=\mathrm{XY}+\mathrm{X}^{\prime} \mathrm{Z}+\mathrm{YZ}$
2. Design a full adder circuit using two half adders. Realize it using logic diagram and block diagram.
3. Minimize the expression $\mathrm{F}(\mathrm{X} . \mathrm{Y} . \mathrm{Z})=\Sigma(0.2 .3 .4 .5 .6)$ using K - map and implement it in NAND logic.
4. Compare and contrast combinational and sequential circuits.
5. Using suitable example explain race condition. How can it be avoided ?
6. Design a 4-bit ring counter. Also represent it using timing diagram and state diagram.
7. Categorize and explain different types of ROMS.
PART - C
(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks.)
UNIT - I

III Define Boolean algebra. List the Boolean laws for algebraic expressions.

Or

IV (a) Express the following boolean expressions in minterms and maxterms.
(i) $\bar{A}+\bar{B}$
(ii) $\mathrm{A}(\overline{\mathrm{B}}+\mathrm{A}) \mathrm{B}$
(b) State De Morgan's Theorem. Using it, reduce the following expressions.
(i) $\overline{\overline{\mathrm{AB}}(\mathrm{CD}+\overline{\mathrm{EF}}(\overline{\mathrm{AB}}+\overline{\mathrm{CD}})}$
(ii) $\overline{\overline{\mathrm{AB}}+\overline{\mathrm{A}}+\mathrm{AB}}$
UNIT - II

V (a) Minimize the following expression using K-map :
$\mathrm{F}(\mathrm{W}, \mathrm{X}, \mathrm{Y}, \mathrm{Z})=\sum(1,4,7,10,13)+\sum \mathrm{d}(5,14,15)$
(b) Design a 2-bit magnitude comparator and illustrate using a neat logic diagram.

$$
\mathrm{Or}
$$

VI (a) Minimize the following expression using K-map :
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(4,5,7,12,14,15)+\Sigma \mathrm{d}(3,8,10)$
(b) Design and explain the working of a 4 -input multiplexer with the help of logic diagram. What are the applications of multiplexers?
Unit - III

VII (a) Design JK flip-flop using D flip-flop and verify it using characteristic table and equation.
(b) Design a synchronous 3-bit down counter.

VIII (a) Design T flip-flop using JK flip-flop and verify it using characteristic table and equation.
(b) Design a synchronous Mod-6 counter using JK flip flop.
Unit - IV

IX Realize the following functions using a PAL with four inputs and 3-wide AND-OR structure along with the PAL programming table.
$F_{1}(A, B, C, D)=\sum m(6,8,9,12,13,14,15)$
$\mathrm{F}_{2}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(1,4,5,6,7,10,11,12,13)$
$\mathrm{F}_{3}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\sum \mathrm{m}(4,5,6,7,10,11)$
$\mathrm{F}_{4}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(4,5,6,7,9,10,11,12,13,14,15)$
Or
X (a) Briefly explain the different specification parameters of DAC.
(b) Using appropriate example explain error detection and correction using hamming code. 10

