http://gptcthirurangadi.in

Reg. No.....

# DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

# DIGITAL COMPUTER PRINCIPLES

[Time: 3 hours

(Maximum marks : 100)

### PART — A

#### (Maximum marks : 10)

Marks

I Answer *all* questions in one or two sentences. Each question carries 2 marks.

- 1. Convert  $(41.6875)_{10}$  to binary.
- 2. Which gates are called universal gates and why?
- 3. What is don't care condition? Mention its use.
- 4. What are flip-flops ? Give examples.
- 5. What is hamming code, also specify its applications ?  $(5 \times 2 = 10)$

# PART --- B

## (Maximum marks : 30)

- II Answer any *five* of the following questions. Each question carries 6 marks.
  - 1. Simplify the following Boolean functions to a minimum number of literals. Also implement the Boolean functions with gates.

(a) F(X, Y, Z) = (X + Y)(Y + Z) (b) F(X, Y, Z) = XY + X'Z + YZ

- 2. Design a full adder circuit using two half adders. Realize it using logic diagram and block diagram.
- 3. Minimize the expression  $F(X, Y, Z) = \Sigma(0, 2, 3, 4, 5, 6)$  using K- map and implement it in NAND logic.
- 4. Compare and contrast combinational and sequential circuits.
- 5. Using suitable example explain race condition. How can it be avoided ?
- 6. Design a 4-bit ring counter. Also represent it using timing diagram and state diagram.
- 7. Categorize and explain different types of ROMS.

 $(5 \times 6 = 30)$ 



TED (15) - 3133 (REVISION - 2015)

Marks



PART — C

|      | (Maximum marks : 60)                                                                                                                                         |          |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|      | (Answer one full question from each unit. Each full question carries 15 marks.)                                                                              |          |
|      | Unit — I                                                                                                                                                     |          |
| III  | Define Boolean algebra. List the Boolean laws for algebraic expressions.                                                                                     | 15       |
|      | Or                                                                                                                                                           |          |
| IV   | (a) Express the following boolean expressions in minterms and maxterms.                                                                                      |          |
|      | (i) $\overline{A} + \overline{B}$ (ii) $A(\overline{B} + A)B$                                                                                                | 10       |
|      | (b) State De Morgan's Theorem. Using it, reduce the following expressions.                                                                                   |          |
|      | (i) $\overline{\overline{AB}} (\overline{CD} + \overline{EF}(\overline{AB} + \overline{CD}))$ (ii) $\overline{\overline{AB}} + \overline{A} + \overline{AB}$ | 5        |
|      | Unit — II                                                                                                                                                    |          |
| V    | (a) Minimize the following expression using K-map :                                                                                                          |          |
|      | $F(W, X, Y, Z) = \sum (1, 4, 7, 10, 13) + \sum d(5, 14, 15)$                                                                                                 | 5        |
|      | (b) Design a 2-bit magnitude comparator and illustrate using a neat logic diagram.                                                                           | 10       |
|      | Or                                                                                                                                                           |          |
| VI   | (a) Minimize the following expression using K-map:                                                                                                           |          |
|      | $F(A, B, C, D) = \sum(4, 5, 7, 12, 14, 15) + \sum d(3, 8, 10)$                                                                                               | 5        |
|      | (b) Design and explain the working of a 4-input multiplexer with the help of logic<br>diagram. What are the applications of multiplexers ?                   | 10       |
|      | Unit — III                                                                                                                                                   |          |
| VII  | (a) Design JK flip-flop using D flip-flop and verify it using characteristic table and equation.                                                             | 5        |
|      | (b) Design a synchronous 3-bit down counter.                                                                                                                 | 10       |
|      | Or                                                                                                                                                           |          |
| VIII | (a) Design T flip-flop using JK flip-flop and verify it using characteristic table and                                                                       | <u>م</u> |
|      | equation.                                                                                                                                                    | 5        |
|      | (b) Design a synchronous Mod-6 counter using JK flip flop.                                                                                                   | 10       |
|      | Unit — IV                                                                                                                                                    |          |
| IX   | Realize the following functions using a PAL with four inputs and 3-wide AND-OR structure along with the PAL programming table.                               |          |
|      | $F_1$ (A, B, C, D) = $\sum m(6, 8, 9, 12, 13, 14, 15)$                                                                                                       |          |
|      | $F_2$ (A, B, C, D) = $\sum m(1, 4, 5, 6, 7, 10, 11, 12, 13)$                                                                                                 | -        |
|      | F <sub>3</sub> (A, B, C, D) = $\sum m(4, 5, 6, 7, 10, 11)$                                                                                                   |          |
|      | $F_4(A, B, C, D) = \sum m(4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15)$                                                                                            | 15       |
|      | Or                                                                                                                                                           |          |
| Х    | (a) Briefly explain the different specification parameters of DAC.                                                                                           | 5        |
|      |                                                                                                                                                              |          |

(b) Using appropriate example explain error detection and correction using hamming code. 10