

TED (10) -- 4047

(REVISION — 2010)

Reg. No.	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2018

INDUSTRIAL ELECTRONICS AND PLC

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks: 10)

Marks

- I Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. List two applications of IGBT.
 - 2. Define the term latching current of an SCR.
 - 3. State the function of a chopper.
 - 4. Define the term stabilizer.
 - 5. State the principle of hall effect sensors.

 $(5 \times 2 = 10)$

PART — B

(Maximum marks: 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. Draw the structure of a DIAC and explain.
 - 2. Explain full wave mid-point converter with R load.
 - 3. Briefly explain the circuit of an AC chopper.
 - 4. With block diagram explain the operation of on-line UPS.
 - 5. Describe the circuit of speed control of a series motor.
 - 6. Describe Toff instruction in PLC.
 - 7. Draw the ladder diagram of a half adder circuit.

 $(5 \times 6 = 30)$

Marks

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

		Unit — I	
III	(a)	Explain turn on methods of an SCR.	7
		Draw the structure of an IGBT and explain.	8
		OR	
IV	(a)	With circuit diagram explain an RC trigger circuit of an SCR.	6
	(b)	Explain the structure and characteristics of an SCR.	9
		Unit — II	
V	(a)	With circuit diagram explain the principle of a parallel inverter.	8
	(b)	Describe the working of a single phase dual converter.	7
		OR	
VI	(a)	Explain the working of a half wave controlled rectifier with RL load.	8
	(b)	Explain the working of a step down chopper.	7
		Unit — III	
VII	(a)	With block diagram explain a sequence timer used in resistance welding.	8
	(b)	Describe the applications of induction heating.	7
		OR	
VIII	(a)	Explain the speed control of induction motor using rotor on-off method.	8
	(b)	Explain the principle of dielectric heating.	7
		Unit — IV	
IX	(a)	Draw the ladder diagram of an X-OR gate.	6
	(b)	Briefly explain the architecture of a PLC.	9
		OR	
X	(a)	Write short notes on:	
		(i) Proximity switch (ii) RS 485 protocol	8
	(h)	Describe any two math instructions used in PIC	7