\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE - OCTOBER, 2019

ENGINEERING MATHEMATICS - I
[Time : 3 hours
(Maximum marks : 100)

PART - A

(Maximum marks : 10)

I Answer all questions. Each question carries 2 marks.

1. Prove that $\cos ^{2} A-\sin ^{2} A=2 \cos ^{2} A-1$.
2. Write the expression for $\sin 3 \mathrm{~A}$.
3. Prove that in any triangle $\mathrm{ABC}, a b c=4 R \Delta$.
4. If $y=x \sin x$, Find $\frac{d y}{d x}$
5. Find the velocity and acceleration at time ' t ' of a particle moving according to $\mathrm{s}=2 \mathrm{t}^{3}-3 \mathrm{t}^{2}+1$.

PART — B

(Maximum marks : 30)
II Answer any five of the following questions. Each question carries 6 marks.

1. Express $4 \cos \mathrm{x}+3 \sin \mathrm{x}$ in the form $\mathrm{R} \sin (\mathrm{x}+\alpha)$ where α is acute.
2. Prove that $\sin 10^{\circ} \sin 50^{\circ} \sin 70^{\circ}=\frac{1}{8}$.
3. Prove that $(a-b) \cos \frac{c}{2}=c \sin \frac{A-B}{2}$.
4. Differentiate $\sin x$ by the method of first principles.
5. Find $\frac{d y}{d x}$ if $\left(x^{2}+y^{2}\right)^{2}=x y$.
6. Find the equation to the tangent and normal to the curve $y=3 x^{2}+x-2$ at $(1,2)$.
7. Prove that $\sin \mathrm{A}+\sin \left(120^{\circ}+\mathrm{A}\right)+\sin \left(240^{\circ}+\mathrm{A}\right)=0$.
PART - C
(Maximum marks : 60)
(Answer one full question from each unit. Each full question carries 15 marks.)
Unit — I

III (a) Prove that $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$.
(b) If θ is acute and $\sin \theta=0.4$, find the value of $\sec \theta+\tan \theta$.
(c) If $\mathrm{A}+\mathrm{B}=45^{\circ}$, show that $(1+\tan \mathrm{A})(1+\tan \mathrm{B})=2$.

OR
IV (a) Prove that $\frac{1+\cos \theta}{\sin \theta}=\frac{\sin \theta}{1-\cos \theta}$.
(b) If $\sin A=\frac{4}{5}, \sin B=\frac{12}{13} ; A, B$ are acute, find $\sin (A+B)$ and $\cos (A-B)$.
(c) The horizontal distance between two towers is 60 m and the angle of depression of the first tower as seen from the second which is in 150 m height is 30°.
Find the height of the first tower.
UNIT - II

V (a) Prove that $\frac{\sin 3 A}{\sin A}-\frac{\cos 3 A}{\cos A}=2$.
(b) Prove that $\tan \mathrm{A}+\cot \mathrm{A}=2 \operatorname{cosec} 2 \mathrm{~A}$.
(c) Show that $\frac{\sin 2 \mathrm{~A}}{1+\cos 2 \mathrm{~A}}=\tan \mathrm{A}$ and deduce the value of $\tan 15^{\circ}$.

Or
VI (a) Prove that $\frac{\sin A+\sin 3 A+\sin 5 A}{\cos A+\cos 3 A+\cos 5 A}=\tan 3 A$
(b) Prove that $\sin A+\sin 3 A+\sin 5 A+\sin 7 A=4 \cos A \cos 2 A \sin 4 A$.
(c) Solve $\triangle \mathrm{ABC}$, given $\mathrm{a}=4 \mathrm{~cm}, \mathrm{~b}=5 \mathrm{~cm}$ and $\mathrm{c}=7 \mathrm{~cm}$.

Unit - III

VII. (a) Evaluate $\lim _{x \rightarrow 4} \frac{x^{4}-256}{x^{3}-64}$.
(b) If $x=a(\theta-\sin \theta) ; y=a(1-\cos \theta)$, show that $\frac{d y}{d x}=\cot \frac{\theta}{2}$
(c) If $\mathrm{y}=\mathrm{A} \cos p x+\mathrm{B} \sin p x$, (A, B, p are constants), Show that $\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{dx}^{2}}$ is proportional to y.

VIII
(a) Evaluate (i) $\lim _{x \rightarrow 0} \frac{1-\cos 2 x}{x^{2}}$
(ii) $\lim _{x \rightarrow-1} \frac{x^{3}+1}{x+1}$
(b) Find $\frac{d y}{d x}$ if $y=\left(x^{2}+x+1\right)^{7} \sin ^{2} x$.
(c) If $y=A e^{n x}+B e^{-n x}\left(A, B\right.$ are constants), Show that $\frac{d^{2} y}{d x^{2}}-n^{2} y=0$.
UNIT - IV

IX (a) A particle is projected vertically upwards and its height ' h ' and time ' t ' are connected by $h=60 t-t^{2}$. Find the greatest height attained.
(b) A balloon is spherical in shape. Gas is escaping from it at the rate of $10 \mathrm{cc} / \mathrm{sec}$. How fast is the surface area shrinking when the radius is 15 cm .
(c) The deflection of a beam is $S=2 x^{3}-9 x^{2}+12 x$. Find the maximum deflection.

Or

X (a) Find the velocity and acceleration of a particle at $\mathrm{t}=3$ seconds whose displacement is given by $S=3 t^{3}-t^{2}+9 t+1$.
(b) A spherical balloon is inflated by pumping 25 cc of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15 cm .
(c) Find the maximum value of $2 x^{3}-3 x^{2}-36 x+10$.

