

TED (15) - 1002

(REVISION - 2015)

http://gptcthirurangadi.in

	N19 - A0101	
Reg. No		•
Signature		

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — OCTOBER, 2019

ENGINEERING MATHEMATICS - I

[Time: 3 hours

(Maximum marks: 100)

PART — A

(Maximum marks : 10)

Marks

- I Answer all questions. Each question carries 2 marks.
 - 1. Prove that $\cos^2 A \sin^2 A = 2 \cos^2 A 1$.
 - 2. Write the expression for sin 3A.
 - 3. Prove that in any triangle ABC, $abc = 4R\Delta$.
 - 4. If y = x sin x, Find $\frac{dy}{dx}$
 - 5. Find the velocity and acceleration at time 't' of a particle moving according to $s = 2t^3 - 3t^2 + 1.$ (5×2 = 10)

PART — B

(Maximum marks : 30)

II Answer any *five* of the following questions. Each question carries 6 marks.

- 1. Express 4 cos x + 3 sin x in the form R sin(x + α) where α is acute.
- 2. Prove that sin 10° sin 50° sin 70° = $\frac{1}{8}$.
- 3. Prove that $(a b)\cos \frac{c}{2} = c \sin \frac{A-B}{2}$.
- 4. Differentiate sin x by the method of first principles.

5. Find
$$\frac{dy}{dx}$$
 if $(x^2 + y^2)^2 = xy$.

- 6. Find the equation to the tangent and normal to the curve $y = 3x^2 + x 2$ at (1, 2).
- 7. Prove that $\sin A + \sin(120^\circ + A) + \sin(240^\circ + A) = 0$.

PART — C

2

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

III (a) Prove that $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2 \csc \theta$.

(b) If θ is acute and sin $\theta = 0.4$, find the value of sec $\theta + \tan \theta$.

(c) If $A + B = 45^{\circ}$, show that $(1 + \tan A) (1 + \tan B) = 2$.

Or

- IV (a) Prove that $\frac{1+\cos\theta}{\sin\theta} = \frac{\sin\theta}{1-\cos\theta}$.
 - (b) If $\sin A = \frac{4}{5}$, $\sin B = \frac{12}{13}$; A, B are acute, find $\sin (A + B)$ and $\cos (A B)$.
 - (c) The horizontal distance between two towers is 60m and the angle of depression of the first tower as seen from the second which is in 150m height is 30°. Find the height of the first tower.

(a) Prove that
$$\frac{\sin 3A}{\sin A} - \frac{\cos 3A}{\cos A} = 2$$
.

- (b) Prove that $\tan A + \cot A = 2 \operatorname{cosec} 2A$.
- (c) Show that $\frac{\sin 2A}{1+\cos 2A} = \tan A$ and deduce the value of $\tan 15^\circ$.
 - Or
- VI (a) Prove that $\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 3A + \cos 5A} = \tan 3A$

(b) Prove that $\sin A + \sin 3A + \sin 5A + \sin 7A = 4 \cos A \cos 2A \sin 4A$.

(c) Solve \triangle ABC, given a = 4cm, b = 5cm and c = 7cm.

Unit — III

VII (a) Evaluate
$$\lim_{x \to 4} \frac{x^4 - 256}{x^3 - 64}$$

(b) If $x = a (\theta - \sin \theta)$; $y = a(1 - \cos \theta)$, show that $\frac{dy}{dx} = \cot \frac{\theta}{2}$

(c) If $y = A \cos px + B \sin px$, (A, B, p are constants), Show that $\frac{d^2y}{dx^2}$ is proportional to y.

. .

Marks

5

5

5

5

5

5

5

5

5

5

5

5

5

5

5

Marks

5

5

5

5

.

5

5

5

VIII	(a)	Evaluate (i) $\lim_{x \to 0}$	$\frac{1-\cos 2x}{x^2}$	(ii) $\lim_{x \to -1} \frac{x^3 + 1}{x^3 + 1}$	(3+3=6)
		Find $\frac{dy}{dx}$ if $y = (x^2)$	A	x + 1	
	(0)	$\frac{1}{dx}$ $\frac{1}{dx} = (x)$	' X ' 1) SIII X	•	4

3

(c) If $y = Ae^{nx} + Be^{-nx}$ (A, B are constants), Show that $\frac{d^2y}{dx^2} - n^2y = 0$.

- IX (a) A particle is projected vertically upwards and its height 'h' and time 't' are connected by $h = 60t t^2$. Find the greatest height attained.
 - (b) A balloon is spherical in shape. Gas is escaping from it at the rate of 10cc/sec. How fast is the surface area shrinking when the radius is 15cm.

(c) The deflection of a beam is $S = 2x^3 - 9x^2 + 12x$. Find the maximum deflection.

Or

- X (a) Find the velocity and acceleration of a particle at t = 3 seconds whose displacement is given by $S = 3t^3 - t^2 + 9t + 1$.
 - (b) A spherical balloon is inflated by pumping 25cc of gas per second. Find the rate at which the radius of the balloon is increasing when the radius is 15cm.
 - (c) Find the maximum value of $2x^3 3x^2 36x + 10$.