COURSE TITLE	: ELECTRICAL TECHNOLOGY
COURSE CODE	: 3043
COURSE CATEGORY	: B
PERIODS/WEEK	: 4
PERIODS/SEMESTER	: 60
CREDITS	: 4

TIME SCHEDULE

MODULE	ΤΟΡΙϹ	PERIODS
1	AC fundamentals and earthing	15
2	Network theorems and transformers	15
3	DC generators and DC motors	15
4	Alternators and AC motors	15
TOTAL		60

Course General Outcome:

GO	ON COMPLETION OF THE STUDY OF THIS COURSE THE STUDENT WILL BE ABLE :
1	To understand about AC fundamentals
2	To understand the need for earthing and protection of equipments
1	To study the network theorems
2	To know the operations and uses of transformers
1	To understand DC generators
2	To understand DC motors
1	To understand alternators
2	To understand AC motors
	1 2 1 2 1 2 1 2 1

GO - General Outcome

On completion of the study of this course the student will be able :

MODULE I AC FUNDAMENTALS AND EARTHING

1.1.0 To understand about AC fundamentals

- 1.1.1 To explain the concept of alternating voltage and current
- 1.1.2 To Illustrate complex waveforms and representation of alternating quantities
- 1.1.3 To define the terms, cycle, time period, frequency, amplitude, phase, rms value, form factor
- 1.1.4 To describe AC through resistance, inductance, and capacitance and solve simple problems
- 1.1.5 To define power factor and calculation of power in an RLC circuit
- 1.1.6 To illustrate series AC circuits and solve simple problems

1.1.7 To illustrate parallel AC circuits and solve simple problems

1.2.0 To understand the need for earthing and protection of equipments

- 1.2.1 To State the necessity of earthing of equipments and lightning protection of installation
- 1.2.2 To test insulation resistance using megger

MODULE II NETWORK THEOREMS AND TRANSFORMERS

2.1.0 To study the network theorems

- 2.1.1 To state and explain Ohm's law, Kirchoff's law
- 2.1.2 Superposition theorem, Thevenins theorem, Maximum power transfer theorem (Solve simple problems)

2.2.0 To know the operations and uses of transformers

- 2.2.1 To explain the working principle of transformer
- 2.2.2 To illustrate the construction of transformer
- 2.2.3 To illustrate the elementary theory of an ideal transformer
- 2.2.4 To state voltage transformation ratio and rating of a transformer
- 2.2.5 To derive the emf equation of transformer
- 2.2.6 To explain types of losses in transformer
- 2.2.7 To identify the different types and applications transformers

MODULE III DC GENERATORS AND D C MOTORS

3.1.0 To understand DC generators

- 3.1.1 To explain the working principle of DC generator
- 3.1.2 To compare output waveforms of a DC generator and a pure DC waveforms
- 3.1.3 To list different types of DC generator
- 3.1.4 To derive emf equation of a DC generator
- 3.1.5 To explain the armature reaction and it's effects
- 3.1.6 To explain the no load characteristics of a DC generator

3.2.0 To understand DC motors

- 3.2.1 To list the types of DC generators
- 3.2.2 To explain the working principle of DC motor
- 3.2.3 To illustrate the significance of back emf in DC motor
- 3.2.4 To explain the necessity of starter in a DC motor
- 3.2.5 To compare different types of DC motors with characteristics and speed

MODULE IV ALTERNATORS AND AC MOTORS

4.1.0 To understand alternators

4.1.1 To explain the working principle of an alternator

- 4.1.2 To derive the emf equation of an alternator
- 4.1.3 To explain synchronous speed and the determination of frequency (Solve simple problems)
- 4.1.4 To illustrate the open circuit characteristics of an alternator

4.2.0 To understand AC motors

- 4.2.1 To explain the working principle and classification of AC motors
- 4.2.2 To explain the working principle of stepper motor and its applications
- 4.2.3 To explain the working principle universal motor and its applications
- 4.2.4 To explain the working principle servo motor and its applications
- 4.2.5 To explain the working principle of single phase and three phase induction motor and their applications

CONTENT DETAILS

MODULE I AC FUNDAMENTALS & TRANSFORMERS

Concept of alternating voltage and current - complex waveforms - representation of alternating quantities - defining the terms cycle, time period, frequency, amplitude, phase, rms value, form factor - AC through resistance, inductance, and capacitance (Solve simple problems) - power factor definition - calculation of power in an RLC circuit - series and parallel AC circuits (simple problems) - earthing of equipments and lightning protection of installation - megger

MODULE II NETWORK THEOREMS AND TRANSFORMERS

Ohm's law - Kirchoff's law- Superposition theorem - Thevenin's theorem - Maximum power transfer theorem (Solve simple problems) - working principle of transformer - construction of transformer - elementary theory of an ideal transformer - voltage transformation ratio and rating of a transformer - emf equation derivation - losses in transformer - types, applications of transformers

MODULE III DC GENERATORS AND MOTORS

Working principle of DC generator - different types of DC generators - emf equation of a DC generator - armature reaction - no load characteristics - types of DC motors - working principle of DC motor - significance of back emf in DC motor - starters - necessity of starter in DC motor - 3 point starter - comparison of DC motors with characteristics and speed.

MODULE IV ALTERNATORS AND AC MOTORS

Alternators - working principle of an alternator - emf equation of an alternator - synchronous speed and frequency - the open circuit characteristics of an alternator - AC motors - working principle and classification of AC motors - working principle and applications of stepper motor, universal motor, servo motor - working principle and applications of single phase and three phase induction motor

TEXT BOOKS.

- 1. B L Theraja- Electrical Technology (Vol 1 and 2). S. Chand
- 2. D C Kulshreshtha- Basic Electrical Engineering.- TMH.

REFERENCE BOOKS.

- 1. J B Gupta- Electrical Machines .- S K katareia
- 2. V K Metha- Objective Electrical Engineering S Chand and company