https://gptcthirurangadi.in

Reg. No.

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE — APRIL, 2019

ENGINEERING PHYSICS - I

[*Time* : 3 hours

(Maximum marks : 100)

PART - A

(Maximum marks : 10)

Marks

I Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. Define the terms velocity and acceleration.
- 2. Express kinetic energy in terms of linear momentum.
- 3. State triangle law of vector addition.
- 4. What do you mean by elastic fatigue ?
- 5. Define simple harmonic motion. Give the differential equation for simple harmonic motion. $(5 \times 2 = 10)$

PART --- B

(Maximum marks : 30)

- II Answer any five of the following questions. Each question carries 6 marks.
 - 1. State and prove the law of conservation of linear momentum in the case of two colliding bodies.
 - 2. Find out the magnitude and direction of the resultant of two forces P and Q acting at an angle θ by using the law of parallelogram of forces.
 - 3. Explain the method of determination of coefficient of viscosity by Poiseuille's method.
 - 4. Show that only odd harmonics are present in a closed pipe. Illustrate your answer with diagrams.
 - 5. What are energies associated with fluid flow. Write their equations. State Bernoulli's theorem and give the equation.
 - 6. A couple 100 Nm acts on the shaft of a motor and rotates it at a speed of 7 revolutions per second. Calculate the power developed.
 - 7. Calculate the wavelength of sound in air corresponding to the limits of audibility. The audible range is 20 Hz to 20000 Hz. Velocity of sound is 330 m/s.

 $(5 \times 6 = 30)$

(REVISION - 2015)

[3]

Marks

3

6

6

6

6

3

3

6

6

6

6

PART - C

2

(Maximum marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

Unit — I

- (a) Name the seven fundamental quantities and their SI units. Ш
 - (b) Obtain an expression for displacement of a particle during the nth second of its motion.
 - (c) Give the equations of motion for a body moving up under gravity. Astone is thrown vertically up from a bridge with an initial velocity 4.9 m/s. It strikes the water below the bridge after 2 seconds. What is the height of the bridge above the water level ?

OR

- (a) State Newton's second law of motion. From the law obtain an expression for force. IV
 - (b) What do you mean by recoil of a gun ? Obtain an expression for the recoil velocity. A bullet of mass 0.025 kg is fired from a gun of mass 5 kg with a speed 500 m/s. Calculate the recoil velocity of the gun.
 - (c) Define impulse of a force and show that it is equal to the change in momentum.

UNIT --- II

V (a) What are concurrent forces ? State Lami's theorem for concurrent forces.

- (b) Define the terms resultant and equilibrant of two forces. Give the rectangular components of the force 2N acting at an angle 30° with the horizontal.
- (c) The resultant of two forces acting at 150° is perpendicular to the smaller force. If the larger force is 3 N, find the smaller force and resultant.

Or

- VI (a) What are the conditions for equilibrium of a body under coplanar parallel forces. 3 (b) Explain the term couple. Derive a formula for the work done by a couple. 6 (c) At the marks 30cm, 45 cm and 86 cm of a meter scale of mass 0.5 kg, weights 1 kg, 2 kg and 3 kg respectively are suspended. Where the scale should 6 be suspended so that it remains horizontal ? UNIT ---- III VII (a) Define Young's modulus of a material. Give its equation and SI units. 3 (b) A mass of 25 kg is suspended at the free end of a metal wire fixed at the top. The length of the wire is 2m and its radius is 2mm. Find the elongation produced
 - if Young's modulus is 7.5×10^{10} N/m². (c) Distinguish between streamline flow and turbulent flow. Explain the equation of continuity for streamline flow of a liquid.

Or

https://gptcthirurangadi.in

Marks

VIII	(a)	What is terminal velocity? Using Stoke's formula, obtain an expression for the terminal velocity of a sphere falling through a viscous liquid.	6
	(b)	A sphere of radius 2 mm and density 1600 kg/m ² falls through a liquid of density 800kg/m ³ with uniform velocity 4 cm/s. Calculate the coefficient of viscosity of the liquid.	6
	(c)	Discuss the variation of viscosity with temperature for gases and liquids.	3
		Unit — IV	
IX	(a)	Give any three characteristics of stationary waves.	3
	(b)	Describe the resonance column apparatus to find the velocity of sound.	6
	(c)	At what temperature will the velocity of sound in air be double its value at 0° C ?	6
		Or	
x	(a)	Write a note on free vibration, forced vibration and resonance.	3
	(b)	What are ultrasonic waves ? Give its two applications. Describe a method to produce ultrasonic waves.	6
	(c)	The frequency of the second harmonic in an open pipe is 800Hz. If the speed of sound in air is 350m/s, find the length of the pipe.	6

3