TED (21) -3044
(Revision- 2021)

N22-2110220227B
Reg.No.
Signature.

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE - NOVEMBER - 2022

 DIGITAL ELECTRONICS

 DIGITAL ELECTRONICS}
(Maximum Marks : 75)
[Time : 3 hours]

PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark.
$\underset{\text { Module }}{(9 \times 1=9} \underset{\text { Cognitive }}{\mathbf{m a r k s})}$

		Module Outcome	
1	Hexadecimal value of decimal 21 is...........	Cognitive level	
2	Write the 1's complement of 1010	M 1.01	U
3	Write any one universal logic gate and show its symbol.	M 1.03	R
4	Name the fastest logic family.	M 2.02	U
5	Number of control signals required for a 4x1 Multiplexer is......	M 2.04	U
6	Name the type of logic circuit in which the output depends upon only the present input and present state.	M 3.01	U
7	Serial in serial out shift register has.......input line and $\ldots \ldots \ldots .$. output line.	M 3.03	U
8	Counter without common clock is called...........counter.	M 4.01	U
9	Name the memory which is also called volatile memory.	M 4.04	R

PART - B

II. Answer any Eight questions from the following. Each question carries 3 marks.
(8x3=24marks)
Module Cognitive

			$\begin{array}{l}\text { Module } \\ \text { Outcome }\end{array}$		$\begin{array}{c}\text { Cognitive } \\ \text { level }\end{array}$
1	$\begin{array}{l}\text { Add the following Hexadecimal numbers. } \\ \text { a) AC6 }+9 B \quad \text { b) B59 }\end{array}$	M 64			

9	Write any three features of Asynchronous counter.	M 4.01	U
10	Differentiate PROM, EPROM.	M 4.04	U

PART - C

Answer all questions from the following. Each question carries 7 marks.
($6 \times 7=42 \mathrm{marks}$)

\begin{tabular}{|c|c|c|c|}
\hline \& \& Module Outcome \& \[
\begin{gathered}
\text { Cognitive } \\
\text { level }
\end{gathered}
\] \\
\hline III
IV \& \begin{tabular}{l}
Perform the following operations. \\
(i) Multiply \(1011_{2}\) by \(110_{2}\) \\
(ii) 46-14 using 8 bit 2 's complement method. (iii) Convert \(2 \mathrm{AB}_{16}\) to binary. \\
OR \\
Minimize the following expression using K Map
\[
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\sum m(1,4,7,10,13)+\sum d(5,14,15)
\]
\end{tabular} \& M1. 01
M1.04 \& U

U

\hline V

VI \& | Using K Map design a 2 bit Gray to Binary code converter. |
| :--- |
| OR |
| Explain 3 line to 8 line Decoder using truth table only. | \& \[

$$
\begin{aligned}
& \text { M2.04 } \\
& \text { M2.04 }
\end{aligned}
$$
\] \& U

U

\hline VII \& | With the help of conversion table and K Map show the conversion of JK flip flop to T flip flop. |
| :--- |
| OR |
| With necessary diagrams explain 3 bit Johnson counter using D flip flops. | \& M3.02

M3.04 \& A
U

\hline IX

X \& | Explain JK flip flop with logic diagram. Mention its truth table. |
| :--- |
| OR |
| With a diagram explain the working of Serial in - Parallel out Shift register. | \& M3.02

M3.03 \& U
U

\hline XI \& | With the logic diagram and timing diagram briefly explain a two bit ripple up counter with positive edge triggering |
| :--- |
| OR |
| Write short notes on Random Access Memory. | \& M4.02

M4.04 \& U

U

\hline XIII

XIV \& | Design and implement a mode 6 Asynchronous counter using T flip flops. |
| :--- |
| OR |
| Design a 3 bit synchronous up counter. (Excitation table and design equations need, no need to implement) | \& M4.02

M4.03 \& A

\hline
\end{tabular}

