

A23-2103230115A

Reg. N	٧о	 	٠.	 	 	•	•		
Signat	ture	 	 						

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2023

ELECTRONIC MEASUREMENTS & INSTRUMENTATION

[Maximum Marks: 75] [Time: 3 Hours]

PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' mark.

 $(9 \times 1 = 9 \text{ Marks})$

		Module Outcome	Cognitive level
1.	The degree of exactness of a measurement to expected value is	M1.01	R
	called of an instrument.		
2.	In single phase energy meter the retarding torque is generated	M1.04	R
	bysystem.		
3.	Name the grid on the display screen of an oscilloscope that	M2.01	R
	comprises the horizontal and vertical axes.		
4.	grid in CRT is kept at negative potential bias.	M2.01	U
5.	instrument provides frequency domain view of signals.	M3.04	U
6.	In AC potentiometers the voltages being compared must be in	M3.01	U
	equal and		
7.	What is the use of wave analyser?	M3.04	R
8.	What is a load cell transducer?	M4.03	U
9.	The instrument used to display a time varying signal even after	M4.04	R
	the original signal is removed is		

PART-B II. Answer any *eight* questions from the following. Each question carries 'three' marks. $(8 \times 3 = 24 \text{ Marks})$

Module Outcome Cognitive level

1.	Define percentage of error in an instrument and write the expression to calculate the same.	M1.01	R
2.	Illustrate the conversion of Galvanometer into a Voltmeter.	M1.02	U
3.	Outline the gross errors of an instrument.	M1.01	U
4.	Show the construction diagram of PMMC instrument.	M1.03	R
5.	Show how the electrodynamometer can be used for both AC and DC measurement.	M1.04	U
6.	Summarize the necessity of aquadag used in CRT screens.	M2.01	U
7.	Explain any three applications of AC potentiometer.	M3.01	U
8.	Summarize any 3 applications of thermistors.	M4.03	U
9.	List any six selection criteria of a transducer.	M4.02	R
10.	Explain the working of Piezoelectric transducers.	M4.03	u

PART-C Answer all questions. Each question carries *'seven'* marks

 $(6 \times 7 = 42 \text{ Marks})$

		Module Outcome Cognitive lev						
III.	Illustrate the construction and working of repulsion type radial	M1.03	U					
	vane moving iron instrument.							
	OR							
IV.	Summarize the working of digital multimeter with block diagram.	M1.04	U					
V.	Explain the construction of CRT with a neat sketch.	M2.01	U					
	OR							
VI.	Illustrate the measurement of phase difference between two	M2.03	U					
	signals using Lissajous patterns in CRO.	7.52.0.4						
VII.	Explain the bock diagram of Digital Storage Oscilloscope.	M2.04	U					
	OR							
VIII.	Illustrate electrostatic focusing method used in CRT.	M2.01	U					
IX.	Outline the method of Q factor measurement using Maxwell's	M3.01	U					
	bridge.							
	OR							
X.	Draw the block diagram of function generator and explain the	M3.03	U					
	functions of each block.							
XI.	State the working principle of Q meter. Explain the working of its	M3.04	U					
	practical circuit.							
	OR							
XII.	Explain how the slide wire potentiometer measure an unknown	M3.01	U					
	emf.							
XIII.	Explain the block diagram of strip chart recorder.	M4.04	U					
	OR							
XIV.	Summarize the working of LVDT with suitable diagrams.	M4.02	U					
